Supersonic Transport Scheduling and
Fleet Analysis Model

Ty Marien and Toni Trani (Presenters)

Ty Marien, Jonathan Seidel, Karl Geiselhart, Wu Li, and Sam Dollyhigh
NASA Team

Z. \Wang, N. Hinze, E. Freire, and A.A. Trani
Virginia Tech Team

NASA Annual Systems Analysis Symposium
November 2, 2022

NASA Annual Systems Analysis Symposium



ISAT Supersonic Studies Background

For past few years, the PAMO/ISAT has sponsored a series of studies with the Virginia Tech Air
Transportation Systems Laboratory to look at supersonic transport market demand through the
contract with the National Institute of Aerospace.

Objectives:
Determine the target size/range/speed of the low-boom “objective venhicle”
Explore the market feasibility of supersonic transports
Understand how low-boom designs compare to conventional designs in terms of vehicle
economics.

Study Participants
Study leads: Ty Marien (LaRC), Jon Seidel (GRC)
Vehicle definition: Karl Geiselhart, Wu Li (LaRC)
Demand prediction: Dr. Antonio Trani, Zhou Wang, Edwin Freire Nick Hinze (Virginia Tech),
Sam Dollyhigh (Analytical Mechanical Associates)
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FY22 Supersonic Transport Scheduling and Fleet Analysis Study

In previous work, Virginia Tech has developed a passenger demand methodology called the Low-

Boom Systems Analysis Model (LBSAM). There were two areas we wanted to focus on for FY22:
LBSAM incorporates an aircraft operations lifecycle cost model that depends in aircraft utilization and
network efficiency as inputs. These values are not calculated.
LBSAM doesn’t predict what percentage of passengers actually switch from subsonic to supersonic
service, instead it predicts the percentage of passengers willing to pay the increased fare if value-of-
time is factored in. The percentage of passengers who are willing to pay the increased fare and
actually make the switch is handled parametrically.

Study Primary Tasks:
Add a network model with tail tracking and feasible flight schedules to help verify our aircraft network
utilization assumptions.
Add a passenger preference model to LBSAM to better predict the passenger switch rate from
subsonic to supersonic service.
Run sensitivity studies of the integrated demand model to validate its operation.
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Low-Boom Systems Analysis Model (LBSAM)
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178450 177250
Tor 4619.7 4573.8
» FL_LOPS Model OUtpUt t 48028  4756.1
Pos 5.19 5.15
PostFLOPS.Ae.LowBoomMission.output.Econ.blockt[0] 5.4 5.35
PostFLOPS.Ae.LowBoomMission.output.Econ.blockt[1] 90499.7 89335.1
PostFLOPS.Ae.LowBoomMission.output.Econ.blockf[0] 90499.7 89335.1
PostFLOPS.Ae.LowBoomMission.output.Econ.blockf[1] 178450 177250
PostFLOPS.Ae.LowBoomMission.output.Econ.wgross[0] 178450 177250
PostFLOPS.Ae.LowBoomMission.output.Econ.wgross[1] 4619.7 4573.8
PostFLOPS.Ae.LowBoomMission.output.Econ.range[0] 4802.8 4756.1
PostFLOPS.Ae.LowBoomMission.output.Econ.range[1] 67783 67783
PostFLOPS.Ae.LowBoomMission.input.missin.User_Weights.dowe 1.8 1.8
PostFLOPS.Ae.LowBoomMission.input.missin.Cruise.crmach[0] 1.8 1.8
PostFLOPS.Ae.LowBoomMission.input.rerun0.missin.Cruise.crmach[0] 36000 36000
TopLevellnputs.OtherDV.Thrust 9614 9614
PostFLOPS.Ae.LowBoomMission.input.missin.User_Weights.paylod | 4620 4620
PostFLOPS.Ae.LowBoomMission.input.confin.Basic.desrng 4802 4802
PostFLOPS.Ae.LowBoomMission.input.rerun0.desrng 70.39 70.33
Signature.sBoom.sBoom=Loudness.Loudness.PLdB

Aircraft speed, quantity produced, takeoff and empty
weights, and other technical parameters produced
by FLOPS are used to estimate the venhicle
development costs using non-linear regression
equations adapted from a RAND cost model

An operational aircraft life cycle cost model is used
to estimate the Cost per Passenger Mile (CPM)
based on the initial vehicle cost estimate

The CPM cost is used by the Passenger Choice
and Market Demand modules
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Aircraft Development and Life Cycle Cost Module
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Aircraft Operations Life Cycle Cost Module

Supersonic aircraft operations life-cycle cost model include the following:

Vehicle unit cost

Number of annual operations
Maintenance hours per flight hour
Engine overhaul costs

Time between overhauls

Landing fee per landing

Percent of repositioning flights

Stage length flown

Fuel consumption and fuel cost
Hangar cost

Crew and maintenance personnel
Avionics and interior refurbishing costs
Load factor per flight

Depreciation

Life-cycle time

Landing fees and ground handling costs
Airport emission fees

Navigation fees

Insurance costs (liability and hull)
Taxes airline passenger facility fees

Low Boom Supersonic Commercial Aircraft Cost Model - Low Boom

Cost Metrics

| Cost per Trip | 63,800 |
(version R4 version 1.0)
| Total Cost Per Hour | 13,900 |
‘ Fuel Expense per Hour | 4,130 |
| Adjusted Cost Per Mile | 455 |
| Cost per Passenger Mile | 0.66 |
| cPmwihtouioc | o073 |
| indirect Costs per PAX Mile| 021 |
Algglssst:: gCe(l?Sl\i;liFl)ee ' 0.868
| Percent Indirect Cost | 31 |
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: | Annual Periodic Costs I 4,490,000 |
| Flight Time hrs EE P —
["Fusl Consumption pert | 74600 | | Annual Personnel Costs | 1,860,000 | .
| Annual Variable Cost | 18,500,000 |
‘ Annual Traning Cost | 100,000 ‘
| Annual Amortization Cost | 15,400,000 |
Cruise Mach Number Mission Stage Lenght nm | Annual Fixed Costs | 1,160,000 |
1.‘5 1.6 1":7 1.‘8 1.9 2 1.k 1.§k 2|k 2.§k 3k 3.§k 4‘k Annual Hangar and Office ——
-~ ~ ~ () Expenses
Fuel Scaling Parameter Flight Hours per Year Total Annual Cost
0.7 076 0.82 0.88 094 1 1.5k 2k 2.5k 3k 3.5k
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Passenger Preference Module
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Passenger Preference Module

Estimates the fraction of passengers willing Estimated Values of Time for premium
seats range from $120-$240/hr

to switch from subsonic to high-speed )
using a Lufthansa passenger survey and

commercial services using Value of Time OAG Traffic Analyzer airfare analysis
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Market Demand Estimation Module
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Market Demand Estimation Module

1 — = - Ai .

Estimates the number of

passengers traveling in the high- 0.8 . JFKODG

speed vehicle at the route level. f 4 —+ JFK-LHR

. . 06!

Employs the Airline Reporting s

Corporation (ARC) database with 46 S04 4 | LowBoomcPu

million premium class airline tickets Theshoid |

(first and business class) to estimate

the number of passengers switching

to high-speed commercial service 00 os 1' e ; - .

_ - Air Fare per Statute Mile ($2016)
Market Airports OD Pairs Records
US 135 1,535 8.14 million Example: Considering Value of Time and Value of

US-International 327 2,709 9.89 million Comfort

fntcEnasionsl 1,008 2 2110 anilicn 20% of the premium passengers in the JFK-LHR

route may be willing to switch to supersonic aircratft

Airline Reporting Corporation (ARC) datasets f the supersonic air fare is $0.8/mile
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Vehicle Fleet and Network Assignment Module

Estimates the number of airframes needed to cover all
the OD-level routes identified in the Market Demand

Flight Planner M Od U I e

Mix-integer programming technique creates daily
schedules worldwide

Worldwide Network

Find the optimum stop

Re-caloulate Travel time Predicts vehicle utilization, load factors at the OD
airport and network levels, revenue, passenger spill-
* Buffr over, and repositioning flights
<17 hrs >= 17 hrs . . .
o s The outputs are sent (via an iterative loop procedure)
Design | Local | Design to the Vehicle Development and Life Cycle Cost

Network

Module until demand and supply are in equilibrium

Network Network
Optimization Optimization

\/

Final Result
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Vehicle Fleet Assignment Module

L | ¢ Vehicle Development and Life Cycle Cost Module
World Airport OD Level 2
R L h :
ur;v:::bair;gt T Fg:;ﬁ:iﬁh — 1% P;:::ﬁjr —_ Cost per | g Vehicle Life Cycle Cost ¢ De\:Ircc):)ar:\tent <€ -—-———-
/ Projection Passenger Mile L Model Cost Model
oot o | '

Constraint
Airport ! /

Worldwide Fuel Aircraft Block Time Aircraft MTOW

C.ost Data Block Fuel versus Aircraft OEW
(Regional Scope) Maximum Cruise Speed

Distance .
Flight Profiles Er.1g|ne Thrust
A Aircraft Seats

Vehicle Geometry and Size
FAA Takeoff Field Length and

8 Landing Distances
\4
Airport Nighttime \/ . .
Curfews Number of Vehicles in - ~ _

N

|
I
|
[
|
[
[
[
[
[
[
|
|
[
|
[
[
|
[
[
[
[
|
|
|
|
|
—— — - - |
e e —— ~. \
Airport Operations : 7 : Engine Emissions

4. Aircraft Flight Fleet Needed =EEECE E = Noise Power
o nme?\t OD Load Factors = —— g p Curve Data from Aero/
- Vehicle Utilization = Engine Models |
f h
Airport Noise Vehicle
Quotas Maintenance 1

Design Module

lterative Loop

|
|
|
|
|
Factors :
|
|
|
|

Vehicle Fleet
Assignment Module

NASA Annual Systems Analysis Symposium



Sample Low-Boom World Network

* Fleet assignment module assigns individual
e =S aircraft to the worldwide network
; * Network design considers nighttime curfew

0"
180 W 135 W 90 W 45 W 0 45 E 90 E
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Overland/Overwater Flight Restrictions

Estimates flight trajectories for supersonic aircraft
considering supersonic overland restrictions (if

applicable)
Flight planner uses NOAA Re-analysis wind data
sets

Runway length and airport gate compatibility
analysis are considered in the selection of Black - Great Cirdle Routs

candidate OD airport pairs

Travel Time
NCAR Re-analysis Flight Planner
Wind Model . Model Adjustments
Module
Aircraft Speed
Aircraft Cruise Speed Matrix Cost per Mile
Adjustment
. . Model —
Flight _Plannmg 7 'Red = Wind Optimal |
Ana|y3|s Module 'Black = Great Circle Route |
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Vehicle Environmental and Airport Impacts Module
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Airport Compatibility Impacts
LBSAM OD airport pair candidates includes checks for

Airline FAA Aport runway length and gate size compatiblility
Data OAG Database Operations
. 6 Database
Analysis
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OD Pair Taxi-Time Boeing 747-400
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A 10% increase in Aircraft Unit Price Decreases
Worldwide Passenger Demand by 7.5%

7
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A 10% increase in Aircraft Unit Price Decreases

the Number of Aircraft Needed by 11%

Aircraft development cost is
critical to attracting
supersonic demand

The elasticity of aircraft fleet

size with aircraft unit cost is
-1.1

A 10% increase In aircraft unit
price decreases the number
of aircraft demand by 11%

Worldwide Fleet Required
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Fuel cost = $3.50 per gallon
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Relationship Between Aircraft Unit Price and
Weighted Cost per Passenger Mile

1 _1 | | | | l
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A 10% increase in Cost per Passenger Mile Decreases the
Worldwide Demand by 31%

3 x10 | | | 1
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A 10% Increase in Jet-A Fuel Price Decreases
the Worldwide Passenger Demand by 10.3%
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A 10% Increase in Jet-A Fuel Price Decreases
the Number of Aircraft Needed by 10.6%

L 700 . . .
Fuel price is a very Value of Time = $200/hr
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In the model to 6500 | with 1/2 hour buffer
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400 -
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Conclusions

The enhanced LBSAM models offers an integrated approach to study worldwide
demand for supersonic aircraft concepts

Model includes network effects and captures the dynamics between fleet size,
aircraft unit cost, aircraft economics, and passenger preference

Model runs converge (demand-supply) in 5-12 iterations (2-4 hours of CPU time)

Using optimistic parameters in the model development and aircraft operational cost,
we estimate between 400-600 supersonic airframes may be needed in the year 2040

Under optimistic model assumptions (i.e., high daily utilization and moderate fuel

prices), low-boom supersonic aircraft could transport between 16-22 million annual
passengers in 2040

Faster supersonic aircraft concepts require re-examination of aircraft development
cost equations and changes to the aircraft operations life cycle cost models
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Distribution of Worldwide OD Pairs versus Distance
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Distribution of Premium Seats versus Distance
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Distribution of OD Airport Pairs versus Distance
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